An API For Microsimulation Models

Graham Stark
Social Work and Social Policy
University of Northumbria
Newcastle, UK
graham.stark@northumbria.ac.uk

Abstract—This note describes a simple general Application
Programming Interface (API) for controlling microsimula-
tion models.

Index Terms—Microsimulation, APIs

I. INTRODUCTION

An API[1] is a set of standardised rules that allow one piece
of software to request and receive information or services
from another piece of software. Much of the daily life -
online shopping, banking, paying taxes - is built around
simple standardised APIs.

This note describes a simple API for interacting with
microsimulation models. The initial intended use case for the
APl is embedding a tax benefit model into an online learning
platform; possible other uses include building ‘mashups’
of simulations from different providers, integrating realistic
simulations into games, and running models from inside
Content Management Systems (CMSs) such as WordPress.

Standards have been developed for how such APIs should
be designed[2] and described[3], and the proposed API tries
to adhere to these standards.

II. ONLINE MICROSIMULATION MODELS

There have been online, publicly available versions of large
Microsimulation models since the mid-1990s; the Institute for
Fiscal Studies’ Be Your Own Chancellor (1995) and Virtual
Economy (1999) were early examples. Contemporary exam-
ples include the ADRS suite of South African simulations,
TriplePC and the University of Essex’s UK Mod.

These online models are implemented in different ways.
TriplePC has the underlying simulation model and the
web interface written in the same programming language
(Julia[4]), integrated into a single package. Older systems,
and UKMod, have the public facing ‘front end’ written in a
specialist languages like PHP[5] or Java[6], whilst the actual
models are developed seperately and invoked as required by
the front-end.

Microsimulation models have a number of common char-
acteristics:

« they typically have a large number of inputs, outputs
and other controls. It can take dozens of parameters to
characterise, for example, an income tax system - tax
rates, various allowances, switches for different options
and so on;

« healthy models constantly evolve, as they are improved
and as the world they try to capture changes. It’s rarely

a good sign when a model has the same inputs and
outputs now as last year;

« they are typically (though not always) resource-inten-
sitve and long running - from a few seconds up to
hours or even days. (Even a few seconds is a long time
for a typical API service);

« models typically go through a number of distinct
phases - sitting in a job queue, initialising, running
calculations, generating output, and so on.

Based on our experience since then ...

Object - run a model from something like Wordpress -

without needing to have the model to hand.

III. CHARACTERISTICS OF MICROSIMULATION MODELS

Long running
Very different implementations
Phases (queues, running)
Different inputs and outputs
Parameters vs Settings

IV. FEATURES

RESTful (sort of). Reference O’Reilly.
Out of scope: security because ...
Learn about exact formats of inputs/outputs
Hacky session management: CORS shit append session_id
on each response
Low marginal cost of adding a model (view) to a server
Typically front-ended by Apache/NGNX
Formats: JSON - optionally Markdown/XML/CSV
Describe parameters:
Validate at server end, even if also at client-side.
Swagger.

V. THE API
Different for e.g. Julia Scotben, Python Landman so Julia
one is:
https://microapi.virtual-worlds.scot
Typical items:
/model/params/set

/model/settings/set

/model/output/fetch/item
Swagger Docs.


mailto:graham.stark@northumbria.ac.uk
https://web.archive.org/web/19970414074226/http://www.ifs.org.uk/DISCLAIM.HTM
https://virtual-worlds-research.com/demonstrations/virtual-economy/
https://virtual-worlds-research.com/demonstrations/virtual-economy/
https://adrs-global.com/
https://microapi.virtual-worlds.scot
https://microapi.virtual-worlds.scot/docs/

A.
B. Problems

buggy!

TABLE I: OTHERS

Benefit Code Module Notes
Minimum HouseholdAdjuster. j1

Wages


https://github.com/grahamstark/ScottishTaxBenefitModel.jl/blob/master/src/HouseholdAdjuster.jl

(1]
(2]

(3]

(4]

[5]
[6]

REFERENCES

“API” Accessed: Oct. 23, 2025. [Online]. Available: https://en.wikipedia.
org/w/index.php?title=API&oldid=1314301975

M. Masse, REST API Design Rulebook. O'Reilly Media, Inc., 2011.
Accessed: Oct. 22, 2025. [Online]. Available: https://learning.oreilly.
com/library/view/rest-api-design/9781449317904/

“Swagger (software)” Accessed: Oct. 22, 2025. [Online]. Available:
https://en.wikipedia.org/w/index.php?title=Swagger_(software)&oldid=
1282627605

J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, “Julia: A fresh
approach to numerical computing,” SIAM Review, vol. 59, no. 1, pp. 65—
98, 2017, doi: 10.1137/141000671.

S. S. Bakken, Z. Suraski, and E. Schmid, PHP Manual: Volume 1.
iUniverse, Incorporated, 2000.

K. Arnold, J. Gosling, and D. Holmes, The Java programming language.
Addison Wesley Professional, 2005.


https://en.wikipedia.org/w/index.php?title=API&oldid=1314301975
https://en.wikipedia.org/w/index.php?title=API&oldid=1314301975
https://learning.oreilly.com/library/view/rest-api-design/9781449317904/
https://learning.oreilly.com/library/view/rest-api-design/9781449317904/
https://en.wikipedia.org/w/index.php?title=Swagger_(software)&oldid=1282627605
https://en.wikipedia.org/w/index.php?title=Swagger_(software)&oldid=1282627605
https://doi.org/10.1137/141000671

	Introduction
	Online Microsimulation Models
	Characteristics of Microsimulation Models
	Features
	The API
	
	Problems

	References

